
Vol.:(0123456789)

Aquatic Geochemistry
https://doi.org/10.1007/s10498-023-09411-6

1 3

ORIGINAL ARTICLE

Predicting Coral Reef Carbonate Chemistry Through 
Statistical Modeling: Constraining Nearshore Residence Time 
Around Guam

Heidi K. Hirsh1,2  · Thomas A. Oliver3  · Hannah C. Barkley3  · 
Johanna L. K. Wren3  · Stephen G. Monismith4  · Derek P. Manzello5  · 
Ian C. Enochs1 

Received: 24 November 2022 / Accepted: 31 January 2023 
© The Author(s) 2023

Abstract
To accurately predict the impacts of ocean acidification on shallow-water ecosystems, we 
must account for the biogeochemical impact of local benthic communities, as well as the 
connectivity between offshore and onshore water masses. Estimation of residence time can 
help quantify this connectivity and determine the degree to which the benthos can influ-
ence the chemistry of the overlying water column. We present estimates of nearshore resi-
dence time for Guam and utilize these estimates to model the effects of benthic ecosys-
tem metabolism on the coral reef carbonate system. Control volume and particle tracking 
approaches were used to estimate nearshore residence time. These estimates were paired 
with observed patterns in the reef carbonate system around Guam using water samples col-
lected by NOAA’s National Coral Reef Monitoring Program. Model performance results 
suggest that when considering the effects of benthic metabolism on the carbonate system, 
it is paramount to represent the contact time of the water volume with the benthos. Even 
coarse estimates of residence time significantly increase model skill. We observed the 
highest predictive skill in models including control volume derived estimates of residence 
time, but only when those estimates were included as an interaction with benthic composi-
tion. This work shows that not only is residence time critically important to better predict 
biogeochemical variability in coral reef environments, but that even coarse hydrodynamic 
models can provide useful residence time estimates at management relevant, whole-ecosys-
tem scales.
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1 Introduction

Ocean acidification (OA) has already reduced global average surface ocean pH by at least 
0.1 since the beginning of the industrial era (Sabine et  al. 2004; Jiang et  al. 2019), and 
models forecast an additional decline of 0.3–0.4 pH units by the end of the century (Brewer 
1997; Caldeira and Wickett 2003, 2005; Jiang et al. 2019; Orr et al. 2005). Coral reef eco-
systems are particularly vulnerable to OA (Hoegh-Guldberg 2007; Andersson and Gledhill 
2013). Scleractinian corals, which form new reef framework habitat through the process 
of calcification, experience impaired skeletal growth under low pH conditions (Andersson 
et al. 2009). Simultaneously, acidification causes carbonate dissolution and higher bioero-
sion (Wisshack et al. 2012; Webb et al. 2017; Stoltenberg et al. 2021), tipping the balance 
toward net habitat erosion (Enochs et al. 2015a, 2016) and contributing to ecosystem shifts 
(Enochs et  al. 2015b). Understanding the relative importance of different drivers of bio-
geochemical variability on coral reefs—especially characteristics or functions that can be 
restored, protected, or amplified—may provide a means to locally manage the global chal-
lenge posed by OA.

Global OA projections typically focus on changes to the carbonate system in open-
ocean surface seawater. Open ocean models can widely predict oceanic carbonate chemis-
try (Ricke et al. 2013; Jiang et al. 2019), especially where ample data is available (Lauvset 
et  al. 2016 (GLODAP v2); Bakker et  al. 2016 (SOCAT v3)). The complexity of coastal 
systems, however, has made it difficult to make similar OA predictions in shallow-water 
coral reef environments. The vulnerability of coral reefs to OA is complicated by natural 
diel and seasonal cycles in the overlying seawater carbonate chemistry, which can struc-
ture the physiological responses of keystone species (Enochs et al. 2018) and modify their 
exposure (Andersson et al. 2013). Primary production, including photosynthesis from cor-
als, algae, and seagrass beds, can buffer acidification stress when daytime photosynthesis 
elevates local pH as dissolved inorganic carbon (DIC) is removed (Unsworth et al. 2012; 
Manzello et al. 2012). Respiration can exacerbate the effects of global OA by driving an 
influx in DIC and contributing to a further decline in pH. Calcification and dissolution also 
influence DIC, as well as total alkalinity (TA; Smith and Key 1975). The diurnal metabolic 
cycle, combined with long-term OA-driven decreases in buffering capacity, may lead to an 
amplification in the variability experienced on reefs, exposing the coral reef community to 
exacerbated low pH conditions as well as opportunities for buffered conditions (Shaw et al. 
2012).

Nearshore environments are spatially and temporally dynamic with respect to carbon-
ate chemistry due to a combination of biological and physical processes. While alterations 
to seawater carbonate chemistry are driven by benthic community metabolism, they are 
further influenced by environmental factors including light intensity, nutrients, flow speed, 
and depth (Langdon and Atkinson 2005; Page et al. 2016, 2019; Monismith et al. 2007; 
Falter et  al. 2013; Cyronak et  al. 2020). Flow speed and depth are especially important 
because they determine the residence time and the volume of water that interacts with the 
benthos, therefore altering the magnitude of the metabolic signal. A longer residence time 
provides greater contact time between the benthos driving the metabolic change and the 
seawater, resulting in greater chemical modification. Residence time should be properly 
accounted for as a driver of carbonate chemistry variability—especially in the context of 
the benthic community structure on the reef.

Understanding the local drivers of biogeochemical variability on coral reefs is criti-
cal for effective management of OA at local scales. Widespread acidification threatens 
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to reduce calcification and shift coral reefs to a state of net dissolution by the end of 
the century (Silverman et al. 2009), but experimental (Albright et al. 2016) and mod-
eling (Mongin and Baird 2016) studies have demonstrated that a reversal of this trend 
is possible at the local scale through interventions to buffer OA. Albright et al. (2016) 
observed increased net community calcification in a natural coral reef community in 
response to enriched alkalinity (accomplished by pumping a sodium hydroxide [NaOH] 
solution onto the reef flat). And Mongin and Baird (2016) demonstrated the feasibility 
of reef-scale OA mitigation by using seaweed farming to remove carbon and locally 
increase aragonite saturation state. These studies show how local mitigation and rever-
sal of OA trends may be possible at the reef-scale.

Some nearshore environments already act as natural coral reef refugia due to local pro-
cesses (Shamberger et al. 2014; Barkley et al. 2015). To manage reef persistence into the 
future, we must better understand and predict the factors that contribute to ecosystem vul-
nerability and/or resilience to climate change stressors. By understanding natural drivers of 
resilience, managers can take actions to enhance the features that contribute to resilience. 
For instance, planning coral restoration projects in proximity to communities of primary 
producers that can naturally buffer daytime pH (Manzello et al. 2012; Mongin and Baird 
2016), slowing the reduction in aragonite saturation, and supporting calcification.

To predict spatiotemporal gradients in carbonate chemistry on coral reefs, models need 
to incorporate data about the benthic community driving metabolic changes in the carbon-
ate system, as well as the local hydrodynamics modulating the magnitude of those changes. 
While the former is available at multiple resolutions/scales (e.g., diver surveys—satellite 
remote sensing), there is a distinct paucity of applicable flow data. Instrument-based meas-
urements, for example, typically represent small footprints of the reef environment, and 
cannot be used for evaluating the flux of large water masses over multiple habitats. Readily 
available, large-scale hydrodynamic models, however, usually describe basin-scale circula-
tion, and rarely capture the intricacies of nearshore environments. While a few detailed 
hydrodynamic models have been built for specific coral reefs (e.g., Palmyra (Rogers et al. 
2016; Rogers et al. 2017) and Kaneohe Bay (Lowe et al. 2009)), these models are limited 
in their scope and may represent specific time domains.

Here we develop a modeling approach that incorporates both benthic data and residence 
time estimates at large, whole-ecosystem scales to better predict nearshore changes in the 
carbonate system. We apply this approach to the nearshore waters of Guam, an area with 
diverse benthic communities and complex flow regimes. We evaluate two residence time 
estimation techniques (control volume and particle tracking) to assess the importance of 
including residence time in the model, as well as other drivers including benthic composi-
tion, hour of the day, and light availability. An improved capacity to model reef metabo-
lism-driven changes in the carbonate system will enable us to better locally manage coral 
reefs by predicting the features that contribute to vulnerability and resilience.

2  Methods

This model requires four main sources of data: carbonate chemistry, benthic compo-
sition, sunlight exposure, and estimates of residence time from local hydrodynamics 
information. Below we describe each of these components in detail, ending with our 
assessment of model performance.
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2.1  General Site Description

Guam is the southernmost island in the Mariana Archipelago in the western Pacific and the 
largest island in Micronesia. The island is surrounded by a diversity of reef types: fring-
ing reefs border most nearshore areas, barrier reefs surround the patch reef and lagoonal 
areas of the southern Cocos Lagoon and Apra Harbor, and the western and eastern coasts 
are dotted with several sheltered bays (including Tumon Bay, Agana Bay, and Pago Bay). 
There are distinct biological and hydrodynamic environments on the windward (east) and 
leeward (west) sides of the island driven by easterly trade winds. The predominant benthic 
cover on Guam’s reefs is turf algae (59–65%) with relatively low coral cover (the highest 
mean island coral cover was 14.3% in 2011 before decreasing to 13.0% in 2014 and 11.6% 
in 2017) and a small percent cover of crustose calcifying algae (CCA, 4.1–6.8%; see Bark-
ley et al. 2022).

2.2  Carbonate Chemistry

A total of 64 discrete seawater samples (Fig. 1) were collected during three NOAA cruises 
(May 4–7, 2011; March 24–April 4, 2014; May 2–14, 2017) as part of the NOAA Pacific 
Reef Assessment Monitoring Program (RAMP, 2011) and then as part of the NOAA 
National Coral Reef Monitoring Program (NCRMP, 2014 and 2017). Detailed methodolo-
gies of collection and analysis are described in NOAA’s National Coral Reef Monitoring 
Program Plan (NOAA Coral Program 2021). Carbonate chemistry sampling and analysis 
follow the Carbon Dioxide Information Analysis Center Guide to Best Practices for Ocean 
 CO2 Measurements (Dickson et al. 2007). Fifty discrete seawater samples were collected 
around Guam during daylight hours (08:00–15:00 local time) at depths ranging from 0.9 
to 16.5 m. Fourteen additional samples were collected at a single site on the south coast 

Fig. 1  a Example current field around Guam using ROMS current output for April 14, 2017, 12:00:00. Vec-
tors indicate current direction and magnitude. Color also indicates velocity magnitude. White polygon is the 
land mask for the island of Guam; b Downscaled nearshore sector boundaries based on DIC and TA meas-
urements; c ROMS-scale (2 km cell) nearshore sector boundaries. The black markers in b and c represent 
the locations where discrete carbonate chemistry samples were collected in 2011, 2014, and 2017
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to capture natural diurnal fluctuations in carbonate chemistry (every 4 h for 24 h on April 
6–7, 2017). Additionally, three offshore surface samples (over 10  km from land) were 
collected in 2017. Temperature, salinity, and pressure were measured concurrently with 
a Seabird 19 + conductivity-temperature-depth (CTD) profiler. Seawater samples were 
shipped to the NOAA Pacific Marine Environmental Laboratory (PMEL) in Seattle, WA 
and analyzed for TA (open-cell titration using an instrument custom-built by the Dickson 
Lab, Scripps Institution of Oceanography) and DIC (coulometric titration using two Sin-
gle Operator Multiparameter Metabolic Analyzer [SOMMA] systems). TA and DIC were 
used in conjunction with temperature, salinity, and pressure to calculate the full carbonate 
system parameters in the R package seacarb (Gattuso et al. 2020), using dissociation con-
stants from Lueker et  al. (2000). Additional information about carbonate chemistry data 
collection and analysis for the Marianas region is available in Oliver et al. (2018), Barkley 
et al. (2017), and Barkley et al. (2021).

2.2.1  Determining Offshore–Onshore Changes in Carbonate Chemistry 

Nearshore changes in DIC and TA (values normalized to a salinity of 35) were calculated 
using the discrete measurements on the reef minus an offshore endmember value. The off-
shore endmember DIC and TA was the average of the three discrete sample values col-
lected. Since all three offshore samples were collected in 2017 but onshore samples span 
2011–2017, we corrected all offshore reference values for global progression of DIC using 
the linear temporal trend in DIC (Supplementary Material, Figure S1) from the Hawaii 
Ocean Time-series data (https:// hahana. soest. hawaii. edu/ hot/ metho ds/ dicalk. html) and the 
difference in time from collection of the onshore samples and its paired offshore reference.

2.3  Benthic Composition

Benthic cover and community composition data were collected using a stratified random 
benthic survey design according to standard NCRMP sampling protocols (Ayotte et  al. 
2015; Winston et al. 2020; NOAA Coral Program 2021). In total, 346 unique sites were 
surveyed around Guam in 2011, 2014, and 2017: May 5–9 and June 6–16, 2011 (132 sites), 
March 25–April 4, 2014 (117 sites), and May 3–14, 2017 (103 sites). Percent benthic cover 
was determined from photoquadrats using Coral Point Count with Excel extensions (CPCe; 
Kohler and Gill 2006) in 2011 and 2014 and using CoralNet (Beijbom et al. 2015) in 2017. 
The organism (genus/morphology for corals, genus/functional group for algae) or type 
of substrate was identified for ten randomly overlaid points in each image (Lozada-Misa 
et al. 2017). For the purposes of our model, we simplify benthic composition as the percent 
cover of calcifiers (scleractinian coral; Halimeda, crustose coralline algae and Peyssonne-
lia) and non-calcifying algae (macroalgae and turf).

2.4  Sunlight Exposure

We paired 8-day composite Photosynthetically Active Radiation (PAR) data from Mod-
erate Resolution Imaging Spectrometer/Aqua level 3 binned imagery with our sampling 
dates of interest, matching the sampling date with the composite’s centered time. This data 

https://hahana.soest.hawaii.edu/hot/methods/dicalk.html
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can be downloaded from the ERDDAP server (https:// upwell. pfeg. noaa. gov/ erddap/ gridd 
ap/ erdMH 1par0 8day. graph).

2.5  Nearshore Sector Designation

Distinct nearshore environments around Guam were determined using a statistical down-
scaling approach developed by Oliver et al. (2020) based on spatially contiguous cluster-
ing and mixed model analysis. Sector boundaries were informed by clustering of carbon-
ate chemistry samples (DIC and TA) and were achieved by linking neighboring sampling 
points, estimating the similarity between linked points, and finally calculating a minimum 
spanning tree to define natural divisions between groups of neighbors (Assunção et  al. 
2006). The resulting groups underwent mixed model analysis (Zuur et al. 2009) to define 
the optimal balance between fine spatial resolution and statistical robustness, thereby 
informing the total number of distinct sectors around the island (Fig.  1b). Sectors were 
translated into the 2 km gridded environment of the hydrodynamic model data (Fig. 1c) 
and sector IDs were assigned to each grid cell based on the sector number associated with 
it as well as its identity as a “land” cell or an “ocean” cell with velocity data. Cells on the 
border between sectors were assigned the numbers of both sectors. The resulting sector 
size is a function of three drivers: providing enough samples per sector to be statistically 
robust, capturing sample clusters that have low within-group variation in their measured 
carbonate systems, and resulting in a sector size large enough to accommodate multiple 
2 km grid cells.

2.6  Estimation of Residence Time

Nearshore hydrodynamic information within predefined sectors (Fig. 1b) was used to esti-
mate residence time from both a control volume (CV) approach using volume fluxes calcu-
lated over the boundaries of each sector and a particle tracking (PT) approach that traced 
the path of water parcels through each sector. Estimates of residence time were made using 
Regional Ocean Modeling System (ROMS) model 3-hourly flows for the area of interest 
over model years 2015–2021. Control volume residence times were estimated from March 
17 to April 11 (2016–2021) and from April 25 to May 21 (2015–2021). Particle tracking 
residence times were estimated over the same time periods, but only for 2018–2021 due to 
the inconsistency in landmass extent prior to 2018 (see Supplementary Material for details 
about land mask, Figure S2).

2.6.1  Hydrodynamic Information Availability

ROMS is a free-surface, terrain-following, primitive equations ocean model (http:// 
myroms. org). We used a regional implementation of ROMS that covers an area around 
Guam and parts of the CNMI (Powell 2013). The Guam ROMS has a 3-hour temporal 
and 2 km spatial resolution and 36 depth layers with model output available starting April 
15, 2015. The Guam ROMS model uses atmospheric forcing from the Weather Research 
and Forecasting (WRF) model for the Mariana Islands (wrf_guam; approximately 3  km 
resolution) and tide forcing using the Oregon State University Tidal Prediction Soft-
ware (OTPS) TOPEX/Poseidon global inverse solution (TPXO). The boundary condi-
tions for the model are provided by the wider ROMS model for the Western North Pacific 

https://upwell.pfeg.noaa.gov/erddap/griddap/erdMH1par08day.graph
https://upwell.pfeg.noaa.gov/erddap/griddap/erdMH1par08day.graph
http://myroms.org
http://myroms.org
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(roms_mari; approximately 4  km resolution). 3D ROMS model variables (u-component 
velocity, v-component velocity, salinity, and temperature; https:// pae- paha. pacio os. hawaii. 
edu/ erddap/ gridd ap/ roms_ marig. html) and 2D variables (sea surface height [zeta]; https:// 
pae- paha. pacio os. hawaii. edu/ erddap/ gridd ap/ roms_ marig_ ssh. html) were obtained  from 
March 17 to April 11 (2016–2021) and from April 15 to May 21 (2015–2021), encompass-
ing the days that carbonate chemistry was sampled. While a 2 km grid is still coarse for 
studying nearshore dynamics, it is the highest resolution hydrodynamics data available for 
this region.

2.6.2  Control Volume Approach to Residence Time

The 3 h volume flux into and out of each sector was calculated using the ROMS velocity 
field. Both in and out fluxes were estimated as the sum of 3-hourly current flows through 
the  grid cell area over the boundaries between sectors as well as over the sector-ocean 
boundary of each sector to the mixed layer depth (MLD). In areas where the MLD differed 
between two adjacent points composing a cell boundary the deeper depth was used. The 
control volume approach was not used to estimate residence time if data were missing in 
a sector. For instance, on most dates prior to 2018, in sectors 1 and 3, the land mask was 
larger for Guam in the ROMS model (see Supplementary Material Figure S2 for land mask 
discrepancy). This resulted in missing data for the nearshore cells at the northern (sector 
1) and southern (sector 3) ends of the island, so residence time was not estimated in those 
sectors.

Boundary fluxes were converted to residence time (hours) by dividing by sector vol-
umes, which were calculated by multiplying the surface area of each cell in a given sector 
by the MLD or seafloor depth (whichever was shallower), and sea surface height of that 
cell. This guarantees that we are focusing our calculations on a well-mixed, upper water 
mass. Finally, a hindcast running mean (12 and 24 h) was calculated for the reported resi-
dence time to capture the relevant benthic effect on water mass inside each sector. From 
this point, the two control volume (CV) residence time estimations will be described as 
 RTCV12 and  RTCV24, to distinguish between the running means applied.

2.6.3  Particle Tracking Approach to Residence Time

Residence time was also estimated using a Lagrangian particle tracking approach. Particle 
trajectories were modeled using the Parcels v.2.3.0 framework, an open source Lagran-
gian particle tracking tool (Lange and van Sebille 2017; Van Sebille et  al. 2018; ocean-
parcels.org), using Python v.3.10.2. Particles were seeded 500  m apart from each other 
in a grid inside each of the six sectors and extending 4 km beyond the edge of the sector 
(Supplementary Material, Figure S3) and released every two hours for the duration of the 
period specified (March 17–April 11 [2018–2021] and April 15–May 21 [2018–2021]). 
Particles were advected using the ROMS surface velocity field with eddy diffusivity added 
(10  m2  s−1, adopted from Lindo-Atichati et al. 2020) using a five-minute model timestep. 
After the first round of advection and diffusion, each particle was evaluated to determine 
if it had been “beached” on a land cell. Beached particles were returned to their previ-
ous location and re-advected using an adjusted longshore velocity field (further described 
in Supplementary Material, Text S2 and Fig. S4) to simulate longshore flow and prevent 
advection onto the island. Following this process (or if the particle was never beached), 
a new round of advection and diffusion was conducted to continue the particle trajectory. 

https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_marig.html
https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_marig.html
https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_marig_ssh.html
https://pae-paha.pacioos.hawaii.edu/erddap/griddap/roms_marig_ssh.html
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To avoid the velocity components going to zero at the coast, the default no-slip boundary 
condition in Parcels was replaced with the free-slip interpolation condition that separately 
considers the cross-shore and along-shore velocity components and corrects the velocity 
field based on the direction of the land boundary. Model output of particle locations was 
saved at one hour intervals.

Residence time was determined for two domains using the modeled trajectory output 
from Parcels. For every particle inside a nearshore sector at each time point, we deter-
mined the total uninterrupted time the particle had spent in that focal sector so far. We also 
calculated the uninterrupted time spent in any nearshore sector to capture the time when 
the benthic environment of another sector could influence the water before it arrived in its 
current sector. We followed the age tracer approach described in Mongin and Baird (2014; 
see also Monsen et al. 2002 and Hall and Haine 2002) to account for the accumulation of 
nearshore time as each particle was advected and diffused. This approach also incorporates 
the expected decay in metabolic signal outside of the nearshore sectors when water column 
processes and air-sea gas exchange likely counteracted reef-driven changes in carbonate 
chemistry. While we based our expected decay on the treatment described in Mongin and 
Baird (2014), we applied a more aggressive damping rate of 0.8   h−1 for each hour spent 
outside a nearshore sector. From this point on, the two particle tracking (PT) estimates of 
residence time (RT) will be referred to according to the portion of their trajectory consid-
ered, focal sector only or all nearshore sectors, as  RTPTsector and  RTPTnear, respectively.

2.6.4  Climatological Residence Time

Because of the availability of ROMS data, our residence time calculations start on April 
15, 2015. Thus, to pair estimates of sector residence time with all 64 carbonate chemis-
try samples collected around Guam in 2011, 2014 and 2017, we calculated three-hourly 
climatological residence times and paired them with the carbonate chemistry samples by 
fractional Julian day  (i.e., day 1–366 of a given year, with fractional 3  h intervals). We 
generated the annual 3-hourly climatology by summarizing the residence time by sector 
for each fractional Julian day. For the control volume estimates (CV), we generated a cli-
matological mean residence time for two periods: April 15–May 21, spanning the years 
2015–2021, and the earlier period, March 17–April 11, for which data were only available 
in 2016–2021. For the particle tracking estimates (PT), we spanned the years 2018–2021 
for the same two periods. Sectors varied in their temporal coverage, with sectors 2, 4, 5, 
and 6 having all seven years of data present, but due to changes in the ROMS model’s land 
mask (Supplementary Material, Figure S2), sectors 1 and 3 lacked estimates for 2015 and 
2016, and had only partial coverage in 2017.

The fractional Julian day was also calculated for each carbonate chemistry sample 
so that the relevant sector residence time could be matched to each discrete sample for 
modeling. Thus, the carbonate chemistry samples collected in 2011, 2014, and 2017 were 
matched with the appropriate Julian day climatological residence time.

2.7  Assessment of Model Skill

2.7.1  Modeling Nearshore Carbonate Chemistry Deltas

We built linear models of increased complexity using the lme4 package for R (Bates 
et  al. 2015) to describe the nearshore changes in DIC and TA (the difference between 
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endmember chemistry and chemistry on the reef) in 64 discrete samples for Guam. The 
null model included only benthic community structure (the percent cover of calcifiers and 
percent cover of non-calcifying algae). We then successively added parameters to build 
more complex models, starting with hour of the day, then satellite-derived photosyntheti-
cally available radiation (PAR), before including estimates of climatological residence time 
using each of the four methods described above   (RTCV12,  RTCV24,  RTPTsector,  RTPTnear). 
Finally, we included each  climatological residence time estimate as an interaction with the 
benthic composition.

2.7.2  Model Performance

The predictive skill of each model was evaluated by comparing adjusted  R2 values and the 
difference in Akaike’s Information Criterion (ΔAIC). Adjusted  R2 values allowed compari-
son of model accuracy, or the goodness-of-fit for each linear model. ΔAIC provides a way 
to compare the skill and simplicity of each model, allowing us to evaluate if increasing 
complexity in the model improves the fit without overfitting. An increase in model skill is 
indicated by a higher adjusted R squared value and a lower ΔAIC.

3  Results

Our models utilized 64 discrete carbonate chemistry samples collected around Guam in 
2011, 2014, and 2017 as well as benthic survey data to describe the communities present 
at the sites where those samples were collected. These two foundational data sources are 
summarized in Fig. 2.

Fig. 2  a Benthic composition by sector. The x axis is the percent cover of non-calcifying algae (macroalgae, 
other encrusting macroalgae, and turf) and the y axis is the percent cover of calcifiers (corals, crustose cor-
alline algae (CCA), Halimeda algae, and calcifying Peyssonnelia sp. algae). Points represent the mean ben-
thic composition for each sector in each sampling year. Error bars depict standard error; b Nearshore DIC 
(µmol  kg−1) and TA (µmol  kg−1) by sector. Triangles represent offshore endmember chemistry. Lines depict 
the expected changes in chemistry driven by photosynthesis/respiration (horizontal left/right) and calcifica-
tion/dissolution (2:1 slope up/down). All points are colored by sector number and the inset map (top right) 
shows the sector locations around Guam. Point shapes indicate the sample year
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3.1  Benthic Composition

The highest percent cover of non-calcifying algae was observed at the southern end of 
Guam, in sectors 3-5 (Fig. 2a). Sector 6, on the western side of Guam, had the lowest non-
calcifying algal cover and the highest percent calcifier cover.

3.2  Nearshore Carbonate Chemistry

The largest changes in both onshore TA and DIC relative to the offshore endmember (TA: 
2313.6 µmol  kg−1, DIC: 1980.0 µmol  kg−1) were observed in sector 6 on the west side of 
Guam, where TA was as low as 2244.6 µmol  kg−1 and DIC was as low as 1874.9 µmol  kg−1 
(Fig.  2b). Almost all nearshore sites had lower TA relative to the offshore endmember 
sample. Typically, DIC was also lower nearshore, with the exception of sectors 1 and 3, 
where DIC was as high as 1994.9 µmol  kg−1 and 1991.6 µmol  kg−1, respectively. Sector 3 
includes data from the diel suite experiment in 2017 and therefore, includes samples col-
lected late in the day and night, when we expect respiration to elevate DIC in the absence 
of photosynthesis.

3.3  Estimated Residence Time by Sector

Among the four residence time estimates compared for each sector (Fig.  3), the con-
trol volume estimates for sector 6 deviated the most from sector 6’s particle tracking 
estimates and from residence estimates from any methods for the other sectors. In sec-
tor 6,  RTCV12 and  RTCV24 showed median values of 98.28 and 90.37  h, respectively, 
while the next highest median residence times were observed in sector 2 and 3’s par-
ticle tracking estimates, specifically  PTnear (Fig. 3). The particle tracking estimates for 
the southern coast and leeward (west) coast of Guam (sectors 3–6) were relatively low 

Fig. 3  Boxplots of residence time estimates (hours) by sector. Each sector includes residence time estimated 
using each of the four methods. Control volume  (RTCV12 and  RTCV24) estimates are shown in blue colors 
and particle tracking  (RTPTsector and  RTPTnear) estimates are shown in green colors. Y axis is a log scale
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(minimum of 8.5 h in sector 5), and not significantly different between trajectory sum-
ming methods (nearshore versus focal sector) with the notable exception of sector 3, 
where the  RTPTnear was significantly higher (ranging from 45.3 to 74.2 h).  RTPTnear was 
similarly higher relative to  RTPTsector in sector 2, on the windward east coast. In sectors 
1 and 2 (wrapping around the northern coast and down the east), both particle tracking 
estimates yielded relatively higher residence times compared to the control volume esti-
mates. This was also true in Sector 3 (southern coast) for the nearshore particle tracking 
estimate, but the focal sector particle tracking estimate was not significantly different 
from the control volume estimates.

3.4  Model Skill

We evaluated the performance of models including benthic composition, hour of the 
day, satellite-derived PAR, four residence time estimates, and residence time as an inter-
action with benthic composition (Fig.  4). Increasing model complexity beyond basic 
benthic composition, by including hour of the day and then PAR, did not substantially 
increase model skill. Inclusion of residence time in the models usually increased model 
skill, though not in all cases. The greatest increase in model skill resulted from includ-
ing the control volume residence time estimates  (RTCV12 and  RTCV24) as an interaction 
with the benthic composition. The best model skill in predicting ΔDIC was observed 
using  RTCV12 (Fig. 4a), whereas the best skill for predicting ΔTA was seen using  RTCV24 
(Fig.  4b). Including control volume estimates without the benthic interaction did not 
improve model skill relative to models lacking residence time.

Models including the residence time estimates derived from nearshore particle track-
ing  (RTPTnear) also outperformed models lacking residence time, with or without the 

Fig. 4  Model performance comparison for models with and without residence time included. Models with-
out residence time are plotted in black. Models including residence time (not as an interaction) are unfilled 
with shape and color indicating the residence time estimate used. Filled markers indicate models that 
include residence time as an interaction with benthic composition. The legend indicates with parameters 
were included in each model (Benthos = benthic composition, HR = hour of the day, PAR = satellite-derived 
Photosynthetically Active Radiation, RT_CV12 = control volume (12 h running mean) residence time esti-
mate, RT_CV24 = control volume (24  h running mean) residence time estimate, RT_PTsector = particle 
tracking (focal sector) residence time estimate, RT_PTnear = particle tracking (nearshore) residence time 
estimate, RT:Benthos = residence time as an interaction with benthic composition)
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benthic interaction included (Fig. 4). Among the models including  RTPTnear, the inclu-
sion of residence time without the interaction with benthic composition outperformed 
the models that included  RTPTnear as an interaction. The models including  RTPTsector did 
not demonstrate a notable increase in model skill.

4  Discussion

4.1  Overview of Model Performance

Coral reef metabolic processes can counteract or exacerbate the local effects of OA (Cyro-
nak et  al. 2018). Therefore, improving quantitative predictions of how these processes 
affect the local carbonate system may help us better manage reefs in the face of climate 
change. Small-scale and experimental studies have recognized residence time as an impor-
tant driver of local biogeochemical variability (Page et al. 2019; Cyronak et al. 2020), since 
the degree of metabolic alteration of the carbonate system is a function of the time that 
a given parcel of water spends in contact with the local biological community. However, 
residence time estimates are often unavailable at ecosystem scales relevant to management, 
and therefore there is often a disconnect between nearshore carbonate system modeling and 
direct management applications.

Here we demonstrate the utility of even coarse estimations of residence time in predict-
ing the contribution of benthic metabolism to changes in the nearshore carbonate system 
on the reefs around Guam. Our statistical modeling results confirm that, while models that 
lack residence time as a correlate have effectively no power to explain reef carbonate chem-
istry dynamics, the inclusion of residence time elevated predictive skill, even for very sim-
ple estimation methods, i.e., those based solely on the current flux over nearshore sector 
boundaries (CV approach—Fig. 4). Indeed, using residence time calculated with the con-
trol volume approach yielded more predictive power than the particle tracking approach, 
which was only effective when considering residence time in all nearshore sectors along 
the particle trajectory.

4.2  Strengths of Our Approach in the Context of Other Methods used to 
Understand Carbonate Chemistry Variability on Coral Reefs

The modeling method presented here is a valuable addition to existing approaches com-
monly used to describe and quantify benthic metabolic interactions with the seawater car-
bonate system. The method (a) estimates hydrodynamics at a scale relevant to reef interac-
tions, (b) provides repeatable, high-coverage sector-scale estimates of benthic metabolic 
effects, and (c) incorporates both benthic cover and exposure time, thus disaggregating 
physiology and local hydrodynamics.

Of the common methods utilized, no single approach meets all these functions. Most 
previous descriptions of reef biogeochemical variability describe simple flow environments 
or capture limited footprints of benthic impact. Methods widely used to describe and quan-
tify metabolic processes on reefs (e.g., net ecosystem calcification, TA-DIC regressions, 
etc.) are limited in the ability to capture both the direction and magnitude of metabolic 
changes, while also accurately attributing these changes to the relevant combination of 
drivers.
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The importance of residence time in our models corroborates previous studies that have 
examined drivers of change in the carbonate system on coral reefs and have highlighted 
time spent on the reef as an important constraint to metabolic change (Falter et al. 2013; 
Cyronak et  al. 2020). While the influence of residence time on regulating metabolism-
driven changes in water column chemistry is well established in the literature with previous 
studies pointing to the importance of depth and currents as drivers of coral reef biogeo-
chemical variability (Falter et al. 2013; Page et al. 2019; Kekuewa et al. 2021 among many 
others), few studies have described detailed local hydrodynamics outside of very simple 
flow environments (slack water method for negligible flow [e.g., Ohde and van Woesik 
1999; Shaw et al. 2012; Kekuewa et al. 2021] or unidirectional flow [e.g., Koweek et al. 
2015a, b; Albright et  al. 2013; Falter et  al. 2012; DeCarlo et  al. 2017]) where general 
behavior and the effects of currents and/or residence time can be better assumed. Predicting 
residence time in complex coral reef environments is critical for appropriately describing 
the physical mechanisms that limit or amplify metabolic effects on carbonate chemistry. 
Some reef hydrodynamics have been modeled in detail (e.g., Palmyra Atoll, Rogers et al. 
2016; Rogers et al. 2017), but hydrodynamic data and models are lacking for most shallow 
coral reef ecosystems. Despite limitations in spatial resolution, our estimates of residence 
time on the nearshore coral reefs of Guam represent an important step toward accounting 
for appropriate timescales for metabolic change in the carbonate system on coral reefs and 
predicting future carbonate chemistry variability at spatial and temporal scales that are rel-
evant for reef management.

Previous studies have used net ecosystem calcification (NEC) to describe the balance 
between calcification and dissolution in coral reef environments (see DeCarlo et al. 2017 
for a recent synthesis). NEC is predicted to decline with open ocean OA, ultimately result-
ing in a shift on reefs from net accretion to net erosion (Silverman et al. 2009). It is typi-
cally calculated using the alkalinity anomaly technique and applied over small-scale reef 
environments. The sign change of the alkalinity anomaly conveys whether a reef is under-
going net dissolution or net calcification; however, determining the exact rate of change in 
 CaCO3 driven by precipitation and dissolution requires knowledge about flow conditions 
(residence time) and volume. Usually, residence time is determined by tracking a parcel of 
water across the reef using a Lagrangian (e.g., Albright et al. 2013; Koweek et al. 2015a, b) 
or Eulerian (e.g., Falter et al. 2012; DeCarlo et al. 2017) framework. In other cases, NEC 
is determined under conditions of negligible flow (slack water method, e.g., Ohde and van 
Woesik 1999; Shaw et al. 2012; Kekuewa et al. 2021). Less conventional alkalinity anom-
aly techniques have been applied to slightly more complex environments; for instance, 
Shamberger et al. (2018) estimated NEC in a semi-enclosed lagoon in Palau using a combi-
nation of TA, salinity, and volume budgets.

As the slopes of TA-DIC plots change across a reef in space and time, they reflect the 
primary drivers of metabolic alteration, i.e., NEC and net ecosystem production (NEP), a 
balance between photosynthesis and respiration (see synthesis in Cyronak et al. 2018). In 
communities dominated by NEP, the slope will approach 0 and in communities dominated 
by NCC, the slope will approach 2. Changes in TA and DIC, as visualized in property-
property plots, can indicate the sign and magnitude of change in chemistry driven by meta-
bolic processes especially when combined with data describing proportions of calcifying 
and non-calcifying organisms in the area. For instance, in this study, reductions in TA and 
DIC relative to offshore indicate a combination of photosynthesis and calcification across 
all sectors (Fig. 2) around Guam. While property-property plots and TA-DIC slopes can 
be useful tools for understanding changes in the reef carbonate system over space or time, 
including breaking down the dominant processes driving seawater chemistry modification 
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in different reef habitats (Andersson and Gledhill 2013; Anthony et al. 2011), these data do 
not provide a measure of the time scale over which changes occur. It is difficult to deter-
mine whether the magnitude of change should be attributed to changes in metabolic rate or 
if it is the result of exposure time to the benthic community.

While we can use TA-DIC slopes and property-property plots to infer the metabolic 
processes driving change in the carbonate system, we cannot directly assess the metabolic 
rates responsible for changes in chemistry. Even if the changes are likely linked to benthic 
habitats, we do not know how long water is spending in each environment for the signal to 
manifest. A notable strength of our approach here is that our residence time estimates pro-
vide a timescale for local change that we can pair with the sign changes in TA and DIC as 
well as with information about benthic composition. Together, this information provides us 
with a more complete description of the local drivers of change. Furthermore, we are build-
ing a modeling framework where predictions of nearshore reef carbonate chemistry can be 
made in areas without direct in situ measurements of the carbonate system (a requirement 
for both the NEC and TA-DIC regression methods of quantifying coral reef metabolism).

Our approach incorporates hydrodynamics at a scale relevant to reef interactions with 
the water column, but we also generalize by dividing Guam’s nearshore environments into 
only six distinct sectors. This limitation is imposed by the spatial and temporal resolu-
tion of the hydrodynamic model data readily available as well as the spatial distribution of 
the discrete seawater samples. The benthic environment is variable inside each sector, and 
residence time varies over space and time within these sectors, too. Nonetheless, capturing 
even a fraction of the physical variability at this scale is valuable as it allows us to assess 
the independent and interactive impacts of biological and physical drivers of carbonate sys-
tem variability.

4.3  Evaluation of Residence Time Estimation Methods

4.3.1  Relative Performance of Control Volume Versus Particle Tracking Estimates

The interaction of residence time and benthic composition captures the mechanisms behind 
benthic community metabolism driving changes in chemistry (ΔDIC and ΔTA) and resi-
dence time determining the magnitude of that change. Inclusion of the control volume-
derived residence time estimates  (RTCV12 and  RTCV24) resulted in the greatest model skill 
when those residence times were included as interactions with benthic composition, but 
model skill was low when CV residence times were included independently. This suggests 
that this relatively simple estimate of the time a water mass spent in each sector captures 
the relevant timescale for the benthic environment to interact with the water column, and 
therefore has predictive utility.

The more computationally complex particle tracking estimates of residence time also 
improved model skill, but the importance of the interaction with benthic composition was 
less clear and the two distinct particle tracking estimates varied considerably in their utility, 
with  RTPTnear estimates outperforming the focal-sector-focused  RTPTsector. The  RTPTsector 
interaction model was among the worst for predicting both ΔDIC and ΔTA. This may be 
the result of   RTPTsector not fully capturing the time that water spent in contact with a reef 
environment since this approach was limited to the time spent in only the focal sector. If 
water was previously exposed to a metabolic influence, that exposure, and any modifica-
tion, would be underrepresented by this estimation.
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The nearshore method  (RTPTnear) exhibited increased model skill both with and without 
an interaction with the benthic composition; however, the model lacking the interaction 
term performed better, unlike the pattern seen with CV residence time estimates. These 
results suggest that  RTPTnear represents the time that water has spent in contact with the reef 
better than  RTPTsector. The poor performance of models including the benthic interaction 
may be caused by  RTPTnear including residence time on reefs outside the focal sector yet 
still pairing those estimates with benthic cover data from only the focal sector. Therefore, 
for  RTPTnear, all change in chemistry is credited to the focal sector’s composition even if a 
different benthic environment is responsible for part of the change.

4.3.2  Complexity of Nearshore Flow Limits Utility of Particle Tracking Estimates

The relatively poor performance of particle tracking estimates of residence time may be 
due to their reliance on interpolated velocity fields within the nearshore boundary condi-
tions in our relatively coarse model descriptions of these complex coastal hydrodynamic 
environments. Despite providing the best available spatial and temporal resolution for the 
region, the 2 km ROMS model for Guam does not resolve nearshore flow. This limitation 
is particularly relevant for a method that is more reliant on detailed flow, like particle track-
ing, since ROMS does not capture the hydrodynamic complexity of the reef that we expect 
to dictate flow trajectories (for instance, wave action over shallow reefs). Interpolation of 
current velocity across the 2 km grid cells likely resulted in the particle tracking residence 
time estimates overestimating the time spent in each sector on the windward, upstream side 
of Guam, while underestimating the time spent on the leeward, downstream side of Guam 
(Fig. 1a).

In Parcels, the Python framework used to simulate Lagrangian particle tracking, parti-
cles are advected then diffused in each timestep (Supplementary Material, Figure S4). Par-
ticles slow down as they approach the zero velocity of “land”. Depending on the timestep, 
this could bring a particle very close to the shoreline, but that would mean the next inter-
polated velocity used for advection is extremely small. We used the free-slip interpola-
tion method to minimize this behavior by redirecting the velocity vector in the direction 
perpendicular to the land cell (not allowing velocity to go all the way to zero). We also 
utilized an “unbeaching” process described in  the methods. Despite these interventions, 
particles that were advected toward Guam from the east followed slower trajectories down 
the coast before being pushed offshore (usually around the southern end of the island from 
east to west). Longer residence times were especially evident in  RTPTnear since this method 
summed the time a trajectory spent in any nearshore sector, not just the focal sector. Thus, 
many particles in sector 3 (south) had previously followed trajectories along the east 
coast through sectors 1 and 2 resulting in very long residence times for  RTPTnear, whereas 
 RTPTsector only used a fraction of that path time.

In contrast, on the west side of the island, particles seeded further from Guam were less 
likely to reach the western nearshore sectors as the offshore velocity field swept them west-
ward, away from the island. The particles that did travel inside the sectors on the west coast 
of Guam (sectors 4, 5, and 6) had shorter residence times relative to their eastern counter-
parts. They also had shorter residence times relative to the control volume estimates. This 
was especially evident in sector 6 where the control volume-derived residence times were 
especially long due to relatively low fluxes across the sector boundaries. Another important 
distinction between our CV and PT methods—and a possible explanation for some of the 
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estimate discrepancies—is that the PT analysis was restricted to surface flow, while the 
CV integrated fluxes from the surface down to the mixed layer. Vertical velocities are not 
available in the ROMS data for the Marianas region, limiting our ability to model particle 
trajectories in three dimensions.

Together, these four estimates of residence time demonstrate the hydrodynamic variabil-
ity along Guam’s coast, and thus the complexity of physical forcing on the reef. Though 
we lack ground-truthed residence times in these areas for comparison, the improvements in 
model skill with the inclusion of these ROMS-based residence time estimates convey that 
we are capturing important variation in timescales for metabolic modification to occur.

4.4  Application to Management

To implement successful OA mitigation strategies on coral reefs, we first need to under-
stand future exposure. In this study we have demonstrated how residence time can be 
estimated from readily available hydrodynamic information, and how these estimates can 
increase the predictive skill of benthic ecosystem metabolism models. Using this mode-
ling framework, we can predict how benthic community structure and flow conditions may 
modulate carbonate chemistry on future reefs, as they are exposed to more acidic oceanic 
waters and experience altered benthic community composition.

For instance, studies have shown that primary production may be able to offset low pH 
conditions on coral reefs (Manzello et al. 2012; Unsworth et al. 2012). We can assess this 
capacity at target reefs by modeling the changes in the carbonate system resulting from 
changing the benthic composition (for instance, we might expect that increasing photosyn-
thetic community biomass would drive down daytime DIC and buffer pH given the appro-
priate flow conditions for the signal to manifest). By modeling the effects on the carbonate 
system of different changes to the benthic community, we can better predict whether man-
agement strategies will exacerbate or alleviate OA stress on reefs.

While in situ carbonate system data on coral reefs is undoubtedly useful for interpreting 
changes over time or differences among habitats, this data is difficult to collect. Field cam-
paigns tend to be limited in spatial and/or temporal scope (Shaw et al. 2012; Koweek et al. 
2015a, b; Albright et al. 2015; DeCarlo et al. 2017), and findings are difficult to extrapo-
late beyond the study domain. Given the importance of the interaction between residence 
time and benthic composition in driving changes to the carbonate system, we can likely 
predict areas of favorable carbonate chemistry given information about these drivers. High 
resolution benthic data are available for many coral reefs worldwide (e.g., National Centers 
for Coastal Ocean Science [https:// coast alsci ence. noaa. gov/ proje ct/ benth ic- habit at- mappi 
ng- coral- reefs- flori da- carib bean- pacifi c/], Living Oceans Foundation [https:// www. livin 
gocea nsfou ndati on. org/ maps/]) and hydrodynamic models can be developed at scales more 
appropriate for reef scale analyses. The available 2 km ROMS output facilitates estimation 
of nearshore residence times for a relatively large island like Guam, but this resolution 
would be inappropriate for smaller islands and atolls. Hydrodynamics models will require 
downscaling to be appropriately utilized in most reef areas. With information about both 
benthic composition and local residence time, we can begin to identify probable locations 
of beneficial changes in carbonate chemistry and coral reef resilience.

Our findings from Guam can be used to demonstrate how information about local resi-
dence time paired with benthic composition can be utilized to assess resilience. In Guam, 
the most extreme changes in TA and DIC relative to offshore conditions were observed in 
sector 6 (Fig. 2). Sector 6 was characterized by high non-calcifying algal cover and higher 

https://coastalscience.noaa.gov/project/benthic-habitat-mapping-coral-reefs-florida-caribbean-pacific/
https://coastalscience.noaa.gov/project/benthic-habitat-mapping-coral-reefs-florida-caribbean-pacific/
https://www.livingoceansfoundation.org/maps/
https://www.livingoceansfoundation.org/maps/


Aquatic Geochemistry 

1 3

calcifier cover relative to the other sectors (Fig. 2). Sector 6 also had the highest residence 
times (CV methods, Fig. 3). Prolonged exposure to the calcifying and non-calcifying com-
munities in that area likely magnified the signals of calcification and primary production, 
decreasing TA and DIC, respectively. By contrast, we observe an opposite trend when resi-
dence time is lower, minimizing exposure time to benthic metabolism. For example, sector 
3 had some of the highest non-calcifying algal cover (Fig. 2a) and therefore we might pre-
dict that sector 3 would be a viable location for OA buffering via photosynthesis. However, 
we observed a lower DIC drawdown in sector 3 than in sector 6, despite the higher cover 
of photosynthesizing organisms (Fig. 2a), likely due to the relatively short residence times 
in sector 3 (Fig. 3). Therefore, while sector 3 might initially present a promising area for 
OA refugia planning due to its abundance of photosynthesizing biomass, in actuality it 
is likely a poor choice for refugia-based management of reefs since short residence times 
would prevent the metabolic modification (DIC drawdown) required to combat acidifica-
tion stress.

Given the importance of residence time in disentangling carbonate chemistry variability 
and the utility of model-derived residence time estimates, we should invest in the develop-
ment of hydrodynamic models in complex coastal environments, including coral reefs. We 
are currently limited by the scale of the hydrodynamic models available, but our statistical 
model results demonstrate that, despite this limitation, we can make coarse estimates of 
nearshore residence time that increase predictive skill. To expand this approach, we require 
hydrodynamic models where we can resolve island mass at the very least and ideally where 
we can appropriately constrain flow at the scale of nearshore coral reefs. Pairing appro-
priately scaled hydrodynamic models with benthic habitat maps and oceanic source water 
chemistry will increase our capacity to improve and expand predictions of nearshore coral 
reef carbonate chemistry.
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